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Abstract 

 
We present a first principles calculations of the second-order 

optical response functions as well as the dielectric function for ABO3 
(A=K, Li, Ba; B=Ti, Ta, Nb) and A5B6C7 ( A=Sb; B=S, Se; C=I, Br ) 
ferroelectrics. Specially, we evaluate the dielectric function 

)()()( 21  i  and the second harmonic generation 

response coefficient ),,,2()2(    over a large frequency 

range. The electronic linear electro-optic susceptibility 

)0,,,()2(    is also evaluated below band gap. These results 
are based on the series of self-consistent LDA calculations within 
DFT.  
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 1. Introduction 

 
Nowadays, nonlinear optics has developed a field of major study 

because of rapid advance in photonics [1]. Nonlinear optical 
techniques have been applied to many diverse disciplines such as 
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condensed matter physics, medicine and chemical dynamics. The 
development of new advanced nonlinear optical materials for special 
applications is a crucial importance in technical areas such as optical 
signal processing and computing, acousto-optic devices and artificial 
neuro-network implementation. However, there is comparatively a 
much smaller effort to understand the nonlinear optical process in 
these materials at the microscopic level. Theoretical understanding on 
the factor that controls the figure of merit is extremely important in 
improving the existing electrooptic (EO) materials, and in the search 
for new ones [2].    

Even though there exist a number of calculations for the 
electronic band structure and optical properties using different 
methods [3-10]. There is a large variation in the energy gaps, 
suggesting that the energy band gap depends on the method of the 
energy spectra calculation. We therefore thought it was worthwhile to 
perform calculations using density functional theory (DFT) in the 
local density approximation (LDA) expressions, as implemented 
within ABINIT package [8] the following convention.  

In this paper, we describe details calculations of the linear and 
nonlinear optical properties, includes second harmonic generation 

response coefficient ),,2(
)2(

www  over a large frequency range 
for some ABO3 (A= Ba, K, Li, B=Ti, Ta, Nb) and A5B6C7 ( A=Sb, 
B=S, C=I, Br ) ferroelectrics.  

 
 
2. Computational details 
 
 The nonlinear optical properties of ferroelectrics were 

theoretically studied by means of first principles calculations in the 
framework of  DFT and based on the  LDA[11] as implemented in the 
ABINIT code[8,12]. The self–consistent norm-conserving 
pseudopotentials are generated using Troullier-Martins scheme [13] 
which is included in the Perdew-Wang [14] scheme as parameterized 
by Ceperly and Alder [15]. The Brillouin zone was sampled using a 6 
x 6  x 6 the Monkhorst-Pack[16]  mesh of special k points. 
Rhombohedral position coordinates of LiNbO3 and LiTaO3 using both 
experimental value [17, 18] were calculated to relate to the hexagonal 
coordinates given in the literature by the transformation [19]. The 
coordinates of KNbO3  [20]  and   BaTiO3[21] are reported in Table 1. 
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All calculations of ABO3 and A5B6C7 have been used with the 
experimental lattice constants and atomic positions. The lattice 
constants and atomic positions are given in Table 1. The coordinates 
of the other atoms can easily be obtained by using the symmetry 
operations of the space groups. These parameters were necessary to 
obtain converged results in the nonlinear optical properties and 
phonons data at Γ point of the Brillouin zone. 
 
Table 1: The lattice parameters and atomic positions in ABO3                                                              

 
Phase Space Lattice Group Parameters (Å) Atom Position 

 
LiNbO3 

Ferroelectric 
(Rhombohedral) 

R3c 
 
 

a = b = c=5.4944   Li 

Nb 
O 

(0.2829, 0.2829, 0.2829) 
(0.0000, 0.0000, 0.0000) 
(0.1139, 0.3601,-0.2799) 
 

LiTaO3 

Ferroelectric 
(Rhombohedral) 
 

R3c 

 

a = b = c=5.4740  
 
 

Li 

Ta 
O 
 

(0.2790, 0.2790, 0.2790) 
(0.0000, 0.0000, 0.0000) 
(0.1188, 0.3622,-0.2749)   

KNbO3 

Ferroelectric 
(Tetragonal) 

 
 

P4mm 

 

a=b=3.997, c=4.0630    
 
 

K 
Nb 
O(1) 
O(2)   
 

(0.000, 0.000, 0.023)              
(0.500, 0.500, 0.500)       
 (0.500, 0.500, 0.040) 
 (0.500, 0.000, 0.542) 
 

BaTiO3 
Ferroelectric 
(Tetragonal) 
 

P4mm a=b=3.9909, c=4.0352      
 

Ba 
Ti 
O(1) 
O(2) 
 

(0.0000, 0.0000, 0.0000) 
  (0.5000, 0.5000, 0.5224) 

(0.5000, 0.5000,-0.0244) 
(0.5000, 0.0000, 0.4895) 
 

SbSBr 
Ferroelectric 
(Orthorombic) 
 

Pnma 
 

a=8.168, b=9.7, c=3.942 
 

Sb 
S 
Br 

(0.1235, 0.1321, 0.2777) 
(0.8370, 0.0486, 0.2585) 
(0.5135, 0.8231, 0.2500) 

SbSI 
Ferroelectric 
(Orthorombic) 

Pnma 
 

a=8.52, b=10.13, c=4.10            Sb 
S 
I 

(0.119, 0.124, 0.298) 
(0.843, 0.049, 0.261) 
(0.508, 0.828, 0.250) 
 

 
3. Linear and nonlinear optical response 
 
3.1 Linear optical response 
 
It is well known that the effect of the electric field vector, )(E , 

of the incoming light is to polarize the material. In an insulator the 
polarization can be expressed as a Taylor expansion of the  )(E  
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where i
sP  is the spontaneous polarization, 

)1(

ij

  is the linear 

optical susceptibility tensor [22 ].
)2(

ijl

  the second-order nonlinear 

susceptibility tensor and will discusses in sec.4. The dielectric 

function )],(41[)(
)1(
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  and the imaginary part of 
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The real part of )(),( 1  ij
ij , can be obtained by using Kramers-

Kronig transformation 
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As the Kohn-Sham equations only determine the ground-state 

properties, hence the unoccupied conduction bands have no physical 
significance. If they are used as single-particle states in optical 
calculation of dielectric, a band gap problem comes into existence: 
The absorption starts at a too low energy [23]. In order to remove 
the deficiency the many-body effects must be included in 
calculations of response functions. In order to take into account the 
self-energy effect, generally used the scissors approximation [23]. In 
the calculation of the optical response in present work we have used 
the standard expression for )( ij  (see Eq.2 and 3). 

 
3.2 Nonlinear response 
 
The general expression of the nonlinear optical susceptibility 

depends on the frequencies of the )(E . Therefore, in present context 
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of the (2n+1) theorem applied within the LDA to DFT we get 
expression for the second order susceptibility [22-25]. As the sum of 
the three physically different contributions  
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jjijljijljij

i                  (4) 

 
 

That includes contributions of interband and intraband transitions 
to the second order susceptibility. The first term in Eq.4 describes 
contribution of interband transitions to second order susceptibility. 
The second term represents the contribution of intraband transitions to 
second order susceptibility and the third term is the modulation of 
interband terms by intrabands terms. We have used this expression to 
calculate nonlinear response functions of ferroelectrics.  

 
 
 3.3 Principal refractive indices calculation 
 
The principal refractive indices, in , can be computed as a square 

root of the eigenvalues of the optical dielectric tensor. This term is 
difficult to compute in practice. However, in usual ferroelectric such 
as BaTiO3 or KNbO3, the variations of in  in the paraelectric phase are 

small compared to their variation at the phase transition. Following 
ref.[22] we will neglect the thermal fluctuation and their correlations 
since we are interested in the variation of in  below the phase 

transition temperature (Tc) where we expect the term that describes 

the variatious of 
)1(

 due to the averaged crystal lattice distortions to 
dominate. The linear EO effect is related to the first order change of 
the optical dielectric tensor induced by a static or low frequency 
electric field. 
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3.4 Electro-Optic tensor 
 
The optical properties of material usually depend on external 

parameters such as the temperature, electric or magnetic fields or 
mechanical constraints (stress, strain). Now we consider the 
variations of the refractive index induced by a static or low-frequency 
electric field E . At linear order, these variations are described by the 
linear electro-optical (EO) coefficients (Pockels effect). 

               

 k
k

ijkij Er


 3

1

1)(                              (5) 

 
where  ij)( 1  is the inverse of the electronic dielectric tensor and 

ijkr  the EO tensor. Within the Born-Oppenheimer approximation, the 

EO tensor can be expressed as the sum of the three contributions: a 
bare electronic part el

ijkr  , an ionic contribution ion
ijkr  and a piezoelectric 

contribution piezo
ijkr . The electronic part is due to an interaction of  kE  

with the valence electrons when considering the ions artificially as 
clamped at their equilibrium positions. It can be computed from the 

nonlinear optical coefficients. As can be seen from Eq.4 
)2(

ijl

   defines 

the second order change of the induced polarization with respect to 

kE . We have to transform   ij  to ij)( 1  by the inverse of the 

zero-field electronic dielectric tensor [34]. 
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We obtain the following expression for the electronic EO tensor: 
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Eq.7 takes a simpler from when expressed in the principal axes of 
the crystal under investigation [34]: 

                    
 

)2(

22

8

ijk

ji

el

ijk nn
r 

                                          (8) 

 
where  in  coefficients are the principal refractive indices.  
 
The origin of ionic contribution to the EO tensor is the relaxation 

of the atomic positions due to the applied electric field    kE  and the 

variations of the  ij   induced by these displacements. It can be 

computed from the Born effective charge *
,, kZ  and the  kij T /  

coefficients introduced in [34].  
In the discussion of the EO effect, we have to specify whether we 

are dealing with strain-free (clamped) or stress-free (unclamped) 

mechanical boundary conditions. The clamped EO tensor 
ijkr  takes 

into account the electronic and ionic contributions but neglects any 
modification of the unit cell shape due to the converse piezoelectric 
effect [7]. 

 
                  

ion
ijk

el
ijkijk rrr 

                    (9) 

 
 

Experimentally, it can be measured for frequencies of  kE  high 
enough to eliminate the relaxations of the crystal lattice but low 
enough to avoid excitations of optical phonon modes (usually above ~ 
102 MHz). To compute the unclamped EO tensor 

ijkr  we have added 

the piezoelectric contribution to 
ijkr . In contrast to the dielectric 

tensor, the EO coefficients can either be positive or negative. The sign 
of these coefficients is often difficult to measure experimentally. 
Moreover, it depends on the choice of the Cartesian axes.  The z-axis  
is along the direction of the spontaneous polarization and the y – axis 
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lies in a mirror plane. The z and y–axis are both piezoelectric. Their 
positive ends are chosen in the direction that becomes negative under 
compression. The orientation of these axes can easily be found from 
pure geometrical arguments. Our results are reported in the Cartesian 
axis where the piezoelectric coefficients d22 and d33 are positive. 
These coefficients, as well as their total and electronic part, are 
reported in Table 2. All EO coefficients are positive as is the case for 
the noncentro-symmetric phases [7], the phonon modes that have the 
strongest overlap with the soft mode of the paraelectric phase 
dominate the amplitude to the EO coefficients. Moreover, the 
electronic contributions are found to be quite small. All our 
investigation of EO coefficients of ABO3 shows a good agreement 
and also between our results and earlier investigations.  

 
 

Table 2:  EO tensors (a), and   Second-order nonlinear optical susceptibilities (b) for 
some ABO3 and A5B6C7 crystals 
 

(a) 
 

Crystal Symmetry 
Class 

 EO coefficients x 10-7 (esu)  

Electronic Total  Exp 
BaTiO3 4mm r13 0.358 1.653 3.06 [27] 
  r33 0.505 3.570 12.18 [27] 
KNbO3 4mm r13 0.288 1.279   
  r33 1.029 5.117   
  r51= r42 0.288 1.279   
 3m r13 0.569 3.417   
  r33 0.942 6.276   
  r51= r42 0.623 3.459   
  r22 0.254 1.333   
LiNbO3 3c r13 0.230 1.756 2.58 [28] 
  r33 0.082 6.085 9.24 [28] 
  r51= r42 0.236 1.879 8.40 [28] 
  r22 0.002 0.402 1.02 [28] 
LiTa O3 3c r13 0.092 3.153 2.52 [29] 
  r33 0.718 5.151 0.06 [29] 
  r51= r42 0.091 1.105 9.15 [29] 
  r22 0.039 0.132 -6.00 [29] 
SbSI mm2 r33 35 620 -  
SbSBr mm2 r33 98 910 -  
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(b) 
 

Crystal Symmetry 
Class 

 Dx1 x 10-7 (esu)  

 d15 d22 d31 d33 Exp 
BaTiO3 4mm(cal) 2.457 - 2.547 2.885  
       (exp) 5.1 - 4.71 2.040 [40] 
       
KNbO3 4mm (cal) 2.190 - 2.190 5.322  
          (cal) - - -0.299 -0.818 [40] 
       
 3m     (cal) - 1.546 3.465 4.788  
           (cal) - 0.342 0.121 0.342 [40] 
       
LiNbO3 3c      (cal) - 0.013 1.541 6.877  
          (exp) - 0.774 -1.464 0.342 [40] 
       
LiTa O3 3c      (cal) - 0.221 0.513 4.114  
           (exp) - 0.51 -0.321 -4.92 [41] 
       
SbSI mm2 (cal) - - - 9.3  
SbSBr mm2 (cal) - - - 12.4  

 
 

4. Results and discussion 
 
The calculation of nonlinear optical properties is much more 

complicated than the same procedure in the linear case.  The 
difficulties concern both the numerical and the physics. The k-space 
integration in expression (6) has to be performed more carefully using 
a generalization of methods [24-26]. More conduction bands have to 
be taken into account to reach the same accuracy. The fact that the 
SHG coefficients are related to the optical transitions has remarkable 
consequences. First of all, we note that the equations for SHG consist 
of a number of resonant terms. In this sense the imaginary part, Imχ(2) 
(-2ω,ω,ω) resembles the є2(ω) and provides a link to the band 
structure. The difference, however, is that whereas in є2(ω) only the 
absolute value of the matrix elements squared enters, the matrix  
elements entering the various terms in  χ(2) are more varied. They are 
in general complex and can have any sign. Thus, Imχ(2) (-2ω,ω,ω) can 
be both positive and negative. Secondly, there appear both resonances 
when 2ω equals a interband energy and when ω equals an interband 
energy. Fig. (1-2) shows the 2ω and single ω resonances contributions 
to Imχ(2) (-2ω,ω,ω) compared to є2(ω) (Fig. 6) for a number of ABO3 
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and A5B6C7. They clearly show a greater variation from high 
symmetry to lowest symmetry than the linear optic function. In some 
sense they resemble a modulated spectrum. Thirdly, we note that the 
2ω resonances occur at half the frequency corresponding to the 
interband transition. Thus, the incoming light need not be as high in 
the UV to detect this higher lying interband transition. This is 
important for wide band gap materials like ABO3 compounds where 
laser light sources reaching the higher interband transitions are not 
available. Nevertheless, one still needs to be able to detect the 
corresponding 2ω signal in the UV. Unfortunately the intrinsic 
richness of  χ(2) spectra remains largely to be explored experimentally 
we are not aware of any attempts to measure both the real and 
imaginary parts of the these spectral functions as one standard does in 
linear optics.    Also, it is well known that nonlinear optical properties 
are so sensitive to small changes in the band structure than the linear 
optical properties. That is attributed to the fact that the second 

harmonic response  )()2(  ijk  contains 2ω resonance along with the 

usual ω resonance. Both the ω and resonances can be further 
separated into inter-band and intraband contributions. The structure in 

)()2(  ijk  can be understood from the structures in є2(ω). Our 

calculations in ABO3 for  є2(ω) provides two fundamental oscillator 
bands at ~6 and ~10 eV which correspond to the optical transitions 
from the valance bands to the conduction band, formed by the d orbits 
of the B (Ti,Nb,Ta) atoms and consisting of two subbonds. It is well 
known that the є2(ω) function computed from moments ( p


) appear to 

be very sensitive to the ab initio parameters and seem to be 
particularly appropriate to test electronic band structure. In ABO3 
perovskites the two peaks present in experimental reflectivity data are 
obtained in theoretical curves only when the interband transition 
moments varied with respect to the energies and k


 wave vectors. In 

this computation on ABO3, compounds many parameters have been 
borrowed from existing computations have been neglected, 
explaining some discrepancies between theory and experiments [9-10, 

30-35]. The structure 2-6 eV in )()2(  ijk is associated with interference 

between a  ω and 2ω resonances, while the structure above 6 eV is 
due to mainly to ω resonance. In Fig. 1-5 we show the 2ω interband 
and intraband contributions for ABO3 compounds. Also given is their 
decomposition into intra- and interband contributions. They are 
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arranged so as to move the Ba → K → Li,   Ti → Nb → Ta trends 
obvious. For example χ(2) obviously increases when going from Ba to 
K and Li and from Ti to Nb. Unfortunately, the agreement between 
theory and experiment is by no means perfect [36]. 

    Note that the interband part are negative in all cases and in 
most cases largely compensate the intraband part. The exceptions are 
the LiBO3 (B=Nb,Ta) compounds in both cases of which interband 
part is much smaller in magnitude than the intraband part. This is 
quite interesting because it is unexpected.  It rises the question what 
features in the band structure of these two compounds distinguish 
them from the other compounds [37, 38]. Recently, in ref.[39] were 
computed Ai  (i=1,2) and E phonon modes and nonlinear optical 
susceptibilities for LiNbO3. Knowledge of these  modes can be 
relevant for further theoretical EO studies. We investigated the 
reasons for the cancellation of intra- and interband parts by inspecting 
the corresponding frequency dependent imaginary parts of the χ(2) (-
2ω,ω,ω). First of all, one now sees that the opposite sign of intra- and 
interband parts not only occurs in the static value but occurs almost 
energy by energy. This is true over the entire energy range in BaTiO3 
and over most of the range (E >1 eV) for other ABO3. The sign of the 
inter and intraband part are difficult to understand a- priori   because 
a variety of matrix element products comes into play and both ω and 
2ω resonances occur in both the pure interband, and the interband 
contribution modified by intraband motion when these are further 
worked out into separate resonance terms. The spectra є2(ω)  for the  
ABO3 compounds are rather similar. They  look like the superposition 
of the spectra of more or less four pronounced oscillators with 
resonance frequencies close to the M and Z line structures appearing 
in the 2ω and ω – terms of the imaginary parts.  As an example of 
such a prediction the SHG coefficients of ABO3 and A5B6C7 
compounds are given in Table 2. For incident light with a frequency 
small compared to the energy gap. The independent tensor 
components are listed for   ω=0. The comparison with recent 
experimental values and theoretical calculations [40] are also rather 
successful where available for the static SHG coefficients of the 
ABO3 and A5B6C7

 compounds. 
 



Harun Akkus et al. / Linear and nonlinear optical susceptibilities …  

64 
 

 
 
 

 
 

Fig. 1: Second-order susceptibility ),,2(
2

333

 m  for 

tetragonal LiNbO3  (a) and  KNbO3 (b) 
 
 
 

 



Int. J. Nanoelectronics and Materials 3 (2010) 53-67 

65 
 

Figure 2.  Second order susceptibility 
333

  in ferroelectric phase of SbSI. 

 
5. Conclusion 
 
The linear and nonlinear optical properties for important group of 

ferroelectrics like ABO3 (LiNbO3, LiTaO3,  KNbO3 and  BaTiO3) and 
A5B6C7 have been calculated over a wide energy range. We studied 
some possible combination of A and B. This allowed us to study the 
trends in the second order optical response with chemical 
composition. The results for the zero-frequency limit of second 
harmonic generation are agreed to the available experiment results. 
The calculated linear electrooptical coefficients for LiNbO3, LiTaO3, 
KNbO3 and BaTiO3 are also show agreement with recent 
experimental data in the energy region below band gap. For all the 
considered compounds the SHG coefficient χ(2) is of the order of ~10-7 
esu. Our calculation of the SHG susceptibility shows that the intra-
band and interband contributions have significantly changes with the 
change of B and A – ions.   
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